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Abstract— For mobile robot navigation in crowded environ-
ments, hand and body tracking to enable seamless human-robot
interaction is a challenging problem. Many existing methods
simplify the task with static camera assumptions, initial cali-
bration stages, or ad hoc pose constraints, making them difficult
to be applied to assistive robots used for healthcare applications.
This paper introduces a method of hand-body association
suitable for crowded environments, by incorporating depth
cameras. A robust human hand and body detector, optimized
for crowded environments, is first introduced. This is followed
by a probabilistic framework for associating hands and bodies.
Geodesic distances, based on depth information, are employed
to isolate points local to a hand, regardless of their Euclidean
proximity to points in other regions. This facilitates subsequent
hand-body association based on a Bayesian framework with
increased association robustness. The accuracy of the proposed
method is evaluated using a range of parameters against an
existing approach. A public dataset has been created to assess
the method’s practical value in crowded environments.

I. INTRODUCTION

Human-Robot Interaction (HRI) is the study of natural and
effective communication between robots and humans. With
the prevalence of chronic diseases and improved survival rate
due to advances in medicine, the use of assistive robots is
expected to increase significantly in the next two decades.
This general trend is also driven by a demographic shift
associated with the aging population, and our increasing
demand on improving the quality of life of the elderly
and those with chronic diseases. HRI solutions provide an
important means by which people can naturally command
and control robots in an environment. Many complex HRI
tasks, such as gesture recognition and attention detection,
necessitate a robust understanding of the motion of hands
and associated bodies in a given scene.

Crowded and dynamic environments pose particular prob-
lems for many existing methods of hand and body tracking.
To simplify the task, body part detectors frequently make
assumptions of body pose and occlusions [1]-[3]. In real-
world environments, however, these constraints cannot be
assumed. Most contemporary body tracking research has
thus far focused on full-body pose estimation. To reduce
the search space of this complex problem, many well-known
methods make use of background modeling [4], or require
a user to adopt a specific pose to initialize tracking [5], [6].
Naturally, these restrictions prevent such methods from being
adopted into an effective HRI framework, particularly for the
purpose of patient or elderly care.
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The results from the recent Chalearn Gesture Challenge
[7] produced a surprising outcome: all top ranking methods
made no explicit detection and tracking of humans or indi-
vidual body parts. Clearly there is a need for the development
of robust methods by which this can be accomplished. This
paper proposes such a method.

The purpose of this work is to present a HRI framework
for tracking hands and associated bodies in crowded environ-
ments. The framework operates on depth images and offers
real-time execution. It can deal with rapid tracking initializa-
tion, differing clothing and skin tone, variable illumination
conditions and multiple hypothesis considerations.

The proposed framework for hand-body association con-
sists of three major components, each representing a novelty
of the proposed method. Firstly, a hand-detector designed for
crowded environments is presented. Secondly, a probabilistic
method of filtering bodies from background noise within a
cluttered scene is described. Finally, a Bayesian estimation
framework is used to associate tracked bodies and hands.
Hand detection accuracy is evaluated using a range of
parameters, and validated against the performance of the
shape context descriptor [8]. No publicly available data set
could be found to replicate the crowded environments that
we wished to use in assessing our method. As a result, the
manually annotated files used to generate the results have
been made available online.

II. PREVIOUS WORK

The robust detection of human body parts has been the
subject of extensive research in computer vision. Due to
the availability of reliable depth images, the performance of
these methods is steadily increasing. For example, Shotton
and Sharp proposed a body part detector used by Microsoft’s
Xbox Kinect [4]. With this technique, individual pixels are
classified as one of thirty one possible body parts using
a random forest classifier. Classification is evaluated using
the per-pixel depth differences of a subset of pixels, defined
during offline training.

Ikemura and Fujiyoshi introduced a similar depth feature
[9], which expresses the similarity in depth information over
two regions. It requires normalized depth histograms to be
computed over eight by eight pixel squares. The “relational
depth similarity feature” is defined as the Bhattacharyya
distance between the histograms of these two regions.

Plagemann et. al. developed an interest point detector for
body parts that operates on depth images [1]. This “AGEX”
(Accumulative Geodesic EXtrema) point is formulated by
dividing an input depth image into connected surface meshes



to be analyzed individually. Keypoints are identified as those
with the furthest geodesic distance from the centroid of the
mesh.

Recently, Li and Kulic [2] presented a modification to
the shape context descriptor for body part identification. A
hierarchical algorithm was proposed for initially locating
body endpoints. The descriptor, termed the “local shape
context”, encodes the distance from these endpoints to the
nearest detected edge, in uniformly sampled radial directions.

Human detection is a long standing problem in computer
vision, having been largely tackled using color images.
However, there are many challenging aspects of crowded en-
vironments that necessitate distinct solutions to the problem.

To tackle the problem of crowd identification, Chen et. al.
introduced a method employing object classification tech-
niques [10]. Objects within a scene are segmented using a
combination of background subtraction and temporal differ-
encing of pixels. Objects are identified as crowds using a
combination of temporal features classified by the AdaBoost
algorithm [11], the object’s self-similarity response, and
analysis of its spatio-temporal energies.

Hydra is a mature system for the detection and tracking
of multiple people within a group [12]. Individuals within
a crowd are first segmented using background subtraction,
followed by corner detection and region-based shape anal-
ysis. Detected heads are tracked with a dynamic template
and a second-order motion model. An appearance model is
constructed for each person to recover from lost tracking due
to occlusion.

Many previous hand-body association techniques have
been designed for problem-specific domains, and as such
differ largely in their design.

To recognize pointing gestures during HRI, Nickel and
Stiefelhagen proposed a method that analyzes the orientation
of the associated person [13]. Hands and heads are detected
using skin color segmentation and are localized using com-
putational stereo. Hand-head tracking is dependent on skin
detection probability, anatomic likelihood and movement
since the previous frame. The optimal hand-head hypothesis
is calculated by maximizing this probability over a number
of previous frames.

Buehler et. al [14] developed a model for identifying
the hand and arm poses of the sign language translator ac-
companying TV broadcasts. A template matching algorithm
is firstly used to estimate the shape and position of the
head and torso. The optimal hand-arm configuration is then
found by minimizing a cost function using a sampling-based
framework. This cost function depends on the color likeli-
hood of different body parts, the edge response likelihood,
the pose change between consecutive frames and anatomic
likelihood.

III. METHOD

Generally, hand-body association consists of three major
components. Firstly, a method of hand detection must be
defined. Similarly, body detection must be performed in
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Ilustration of the proposed hand descriptor, based on log-polar

parallel. Finally, hands and bodies must be tracked and
associated together.

A. Hand Detection

The shape context is a successful image descriptor [8],
[15]. The proposed descriptor, shown in Figure 1, is similarly
a depth image histogram, optimized for hand detection in
crowded environments.

Log-polar sampling, as used by the shape context, ensures
that the highest concentration of sample points lies near the
keypoint being analyzed [16]. In order to focus on local
regions most indicative of a hand, the proposed descriptor
extends log-polar sampling to angular, as well as distance,
binning. This is achieved by assigning an angle of interest
to each keypoint. Additionally, areas with the lowest con-
centration of points (those of opposite angle to the keypoint)
can be ignored entirely.

Canny edge detection is initially performed to reduce the
hand detection search space. The resulting edges are treated
as potential hand keypoints in the remaining steps of the
algorithm.

Using Euclidean space to analyze a keypoint’s local points
can lead to problems in crowded environments. As shown in
Figure 2, for a keypoint on a person’s fingertips, unconnected
background and other people will frequently have a smaller
Euclidean distance than points on the forearm. Thus, to en-
sure that distance from a keypoint corresponds to importance
to the descriptor, distances are calculated in geodesic space.

The geodesic distance between two pixels in a depth
image is the shortest cumulative distance between them,
when traversing paths of neighboring pixels on the same
mesh. Geodesic distances can be computed optimally using
Dijkstra’s algorithm [17]. Being a graph search algorithm,
we can formulate the problem in terms of the input depth
image as follows: Local pixels on the same mesh as the
keypoint are represented by nodes in the graph. Two nodes
are connected if they represent neighboring pixels.

Two parameters of this graph naturally arise. The first
is a minimum Euclidean distance, above which neighboring
pixels are considered belonging to different meshes, ming.
The other is a maximum geodesic distance from the keypoint
at which pixels are considered local, maxy. ming can be
equated to the low hysteresis threshold of the Canny edge
detector. max, should be chosen through experimentation.
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Fig. 2. Image showing the advantage of using geodesic distances to
highlight important regions of a hand in crowded environments. Both
geodesic and L1 distances within 0.5 m of the fingertips are shown.

Figure 2 shows how changing max, effects the size of the
local region of a hand.

Thus, for each keypoint, k = [z, y, z]", in a depth image’s
corresponding point-cloud, P, the geodesic distances of local
points, Py, are calculated:

}T

Pk: = {XlX € 7)7g(x7 k) < maxd}? (1)

where g(x, k) is the geodesic distance of point x = [z, y, z]T
from k.

From these local points a 2D keypoint direction vector,
k¢, is calculated. This vector points towards the mean of the
points in Py:

T
kd:PG, > x—k> ,
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where N is the number of points in Pj and P = [1,1,0] .
For each local point, x € Py, a 2D direction vector from
its keypoint, k, is also calculated. The unnormalized vector
is defined as:

x'=Px-k)".

As can be seen from Figure 1, points that lie further than
Z from the keypoint direction are discarded. Additionally,
k< lies at an angle of 5 relative to the descriptor. For valid
points, the angular difference, 6,5, between the descriptor
and %¢ is then calculated:

0, = cos ! (f(d- (de)> ,
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Knowing both the geodesic distance, g (x, k), and angular
difference, 6,1, of all valid points, the keypoint’s histogram
can be constructed. Rather than assign appropriate bins by

calculating the logarithm of these values, it is more efficient
to calculate the static histogram bin boundaries.

The logarithmic distance boundary, b‘fl, of bin number n,
out of a total of N¢, is defined as:

n

. maxg \ N9-1

bfl:mmd< - ) , n=0...N% -1,
ming

Again, mazg4 represents the maximum geodesic distance of a
local pixel, whilst ming represents the minimum Euclidean
distance that separates different meshes.

Angular bin boundaries must be symmetric about the
keypoint direction. The maximum boundary lies at 7 either
side of this direction. The logarithmic angular boundary, b%,
of bin number n out of N® — 1 is then given as:
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Note that only even values of N are considered.

Knowing the histogram bin thresholds, a local point, x €
Py, is assigned a distance, x?, and angular, =7, bin number
as follows:

xi:min(g(xk)gbz), n=0...N%-1,

) =min (0, <b%), n=0...N*—1.

The combined histogram descriptor is formed by concate-
nating all angular bin values in an anticlockwise direction,
in order of increasing distance bin values. To ensure that
the descriptor is invariant to the number of pixels used in
its construction, each bin value, b,,, should be normalized to
one. This ensures that the descriptor is scale-invariant.

b
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Hand detection is performed using a Support Vector Ma-
chine (SVM), pre-trained on descriptors corresponding to
hands. In addition to the standard training of positive and
negative samples, a technique from [18] is adopted. An initial
classifier is trained on a subset of the total positive and
negative samples. This classifier is then used to detect hands
in video sequences where none are present. The resulting
false positives are considered “hard examples”, and are added
to the training set. The classifier is then retrained, resulting
in improved performance.

B. Body Detection

1) Initial Clustering: The first step of the body detection
algorithm is to segment the scene into spatially separated
clusters. A necessary pre-requisite is the removal of the
floor plane, which connects all subjects in the input image.
With the depth camera mounted on a mobile robot, offline
calibration of the floor plane normal, n, and a point in the
floor plane, xf, can be performed.

All points, x, in the input point-cloud, P are filtered if
their Euclidean distance to the floor plane is within a small
threshold, e:

P ={x|x € P,|(x —xs) -] > ¢€}.



Fig. 3. [Initial clustering output. Clusters are colored differently. Note the
planar arm that has been clustered separately from the associated body.

To segment the filtered point-cloud, P’, into spatially
separated clusters, a connected components algorithm is used
[19]. The results of this processing step can be seen in
Figure 3.

Note that for many human gestures, such as the one
pictured, planar arms can lie over 0.3 m from the associated
body, whilst foreshortened hands can be over 0.5 m. This will
cause hands and arms to be clustered separately, unless the
minimum clustering distance is set to a reliably large value.
However, in the crowded environments that the proposed
HRI framework is designed for, this will lead to incorrect
clustering of adjacent bodies. It is this fact that necessitates
the introduction of the following Bayesian association al-
gorithm, and selection of an appropriately small minimum
clustering distance.

2) Body Detection: It can be seen from Figure 3 that
upper bodies have a smaller width and height variance than
random background clusters. Principal component analysis
of a cluster provides a sound method of extracting this shape
information. A probabilistic filtering method can then be
applied to the results in order to detect potential bodies.

Firstly, N points local to the top of a body, Py, are isolated
using equation 1. The covariance matrix, C, of these points,
x = [z,y,2]", is defined as:

N
C= > (k= %) (xx —%)7,
k=0
where X is the mean of the data points.

The cluster’s first principal component, denoted as v, will
give a posture invariant vector running from head to toe.
Conversely, the cluster’s second principal component, vy,
will run horizontally along the upper body:

vIiCv =\

The eigenvalue corresponding to a given principal com-
ponent gives a measure of the variance of points along its
direction. The first eigenvalue, Ay, thus gives a measure of
upper body length. Conversely, the second eigenvalue, Aq,
gives a measure of width.

fo shall be used to denote the cluster feature governed by
Ao, whilst f7 shall denote the cluster feature governed by A;.

The probability that these features indicate the presence of a
body, b, can be naturally modeled by Gaussian distributions:

P(fo | b) ~ N(fo | mo, 03),
P(f1|b) ~N(fi | p, o3).

Because of the orthogonality property of principal com-
ponents, fo and f; are independent variables:

v0O-vl=0.

The Mahalanobis distance of a cluster’s feature vector,
d(fo, f1), can be used as a measure of similarity to the
average body, defined during offline parameter fitting. The
square of this distance will be chi-square distributed, with
two degrees of freedom. Selecting the 0.95 quantile of this
distribution allows us to reasonably filter all feature vectors
with a larger d? value as not characterizing bodies;

Finally, a noise-invariant reference point, x", is defined
for every detected body. It is calculated from the mean of

the points in Py:
s 1
XEPy
C. Hand-Body Association

Temporal tracking of detected hands and bodies is
achieved using multiple independent Kalman filters. The
task remains, however, of associating one with the other.
Recursive Bayesian estimation can be used to provide a
solution to this problem.

Naturally, if a hand has been detected in a cluster which
is also a known body, a high probability can be assigned to
their association. However, separate clustering of hands and
bodies occurs when the pixels connecting the arm and body
are completely occluded. This can only occur with a select
number of poses, such as in Figure 3. A natural likelihood for
hand-body association in these situations can be formulated
from analysis of the displacement between hands and bodies.

Still ensuring generality, a separately clustered hand, h,
will be at one of GG different positions. As such, association
likelihood can be most accurately represented using a Gaus-
sian mixture model. The probability of h, being at position
g, is dependent on the displacement, d = {z,y, z}, from its
associated body:

Plgld) = 7o (d | 1, 52)

The likelihood of h being associated with a body, b;, is
thus given by the weighted sum of the individual probabili-
ties:

P(h|b)=> P(gldi),

geG

where d; is the distance between h and b;.



The posterior probability for hand-body association can
then be given by:

__ P ]bi)P(b)
ko P(B | bi)P(br)’
where [ is the number of detected bodies.

For selecting an appropriate prior probability, P(b;), in
equation 2, it would be pertinent to incorporate temporal
dynamics into the proposed system. As hand and body
tracking has been achieved using Kalman filtering, it is
logical to also model hand-body associations as a Markov
process. Thus, the probability of b; being associated with h
at time ¢, given the associated probability at time ¢ — 1, is
conditionally independent of all prior associations:

PO | B2, B) = PO | 6Y).

P(b; | h) 2

Additionally, the likelihood of h being associated with b;
depends only on the current association, and is conditionally
independent of all prior associations:

P(ht | oot t L 00) = P(RY | BY).

19 71

Equation 2 can then be rewritten, incorporating the new
temporal prior:

P(h' | b)) P(bL | h'~)
ro P(ht | 0L)P(L, | ht=1)

P(b; | h') = (3)
where I is the number of detected bodies at time ¢.

The posterior probability for each hand-body association
at time ¢ is set to the prior probability at time ¢ + 1. Thus,
the optimal associated body for a hand at any given time is
equal to the maximum a posteriori solution of equation 3.

IV. RESULTS
A. Hand Detection

1) Discussion: Microsoft’s Kinect was used as the input
depth camera for all experiments, downsampled to a reso-
lution of 160 by 120 pixels. maz4, the maximum geodesic
distance of pixels local to a keypoint, was set to 0.5 m.
This maximizes the descriptiveness of the forearm whilst
reducing the variability of the bend at the elbow. Run-time
performance of the hand detector averages at just over 15
frames per second, with SVM classification alone accounting
for over 70% of execution time.

To evaluate hand detection parameter choices, a series of
relatively noiseless video sequences were recorded, some
containing people and others of random background. A total
of 1400 hands were manually labeled from the appropriate
videos. Due to the high cardinality of possible background
samples, 11500 were selected randomly from background
videos. The combined samples were split into training and
test sets with a 70:30 ratio. This resulted in a test set of 420
positive and 3450 negative samples.

The SVM classification accuracy of the proposed descrip-
tor is shown in Figure 4. Results are shown for a range of an-
gle and distance bins. As can be seen, the descriptor exhibits
good performance, even for low numbers of distance and
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Fig. 4. Graph showing the classification accuracy of the proposed

descriptor. Accuracy clearly increases with the number of angle bins used.

TABLE I
CONFUSION MATRIX OF THE PROPOSED DESCRIPTOR. COLUMNS
REPRESENT THE PREDICTED CLASS. ROWS REPRESENT THE ACTUAL

CLASS.
Hand Background
Hand 405 15
Background 16 3433

angle bins. Increasing the number of angle bins has a large
effect on accuracy. Increasing the number of distance bins,
however, does not produce such monotonic behavior. This
indicates the importance that the angular binning scheme has
on the descriptor’s performance.

Optimal numbers of distance and angle parameters bins
were chosen in order to further analyze the maximum
performance of the proposed descriptor. Each entry of the
confusion matrix, shown in Table I, details the corresponding
classifier’s responses to the hand and background samples
from the test set.

2) Validation: To more fully validate its performance, the
sensitivity of the proposed descriptor was compared against
that of the original shape context, using a depth image as
input. Sensitivity is defined as:

TP
TP+ FN’

where T'P denotes the number of true positives, and F'IN
denotes the number of false negatives. The results, displayed
in Figure 5, show a clear improvement of the proposed
descriptor for all combinations of distance and angle bins.

The optimal distance and angle bin combination was
chosen for the shape context, and used to construct the results
shown in Table II. The accuracy, sensitivity and specificity
of both descriptors is detailed, where specificity is defined
as:

sensitivity =

TN

SpeCiﬁCity = W
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Fig. 5. Graph comparing the sensitivity of the proposed descriptor and the
shape context. The proposed descriptor outperforms the shape context for
every bin combination.

TABLE I
TABLE SHOWING THE IMPROVED PERFORMANCE OF THE PROPOSED
DESCRIPTOR OVER THE SHAPE CONTEXT.

Accuracy  Sensitivity  Specificity
Proposed Descriptor 99.2% 96.4% 99.5%
Shape Context 98.5% 91.4% 99.3%

TN denotes the number of true negatives and F'P denotes
the number of false positives.

B. Hand-Body Association

In testing hand-body association, four gestures were de-
fined: a wave to grab the robots attention, a subtle push to
have the robot leave, a subtle follow me motion, and a raised
hand indicating that the robot should stop. Multiple people,
from a range of backgrounds, were used to perform these
gestures. Images of the gestures can be seen in Figure 7.

To test the temporal behavior of the hand-body association
algorithm, an experiment was constructed in which two
people were placed side by side. One of the subjects was
asked to move their hand in a pushing gesture. The tracked
hand was then moved in front of the other subject, so as
the hand location would be more naturally associated with
the wrong person. This process was repeated for a period
of twenty-five seconds, with the tracked hand alternating in
front of the two subjects. The effects on per-frame likelihood,
and posterior probability were recorded. The results can be
seen in Figure 6.

A higher likelihood represents a higher hand-body associ-
ation probability in the current time instant. In Figure 6, time
periods where the hand is in front of the wrong subject are
thus obvious. The posterior probability incorporates associa-
tion probabilities from previous time instants. As can be seen,
this gives a more stable association during transient periods
of incorrectly lower likelihood. When this time period is too
long, the posterior probability will decrease appropriately.
This behavior can be seen at the twenty second mark, and
allows the framework to recover from incorrect associations.
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Fig. 6. Plot showing the effect of differing likelihood on posterior

probability. The posterior probability provides stable association results
during transient periods of incorrectly lower likelihood.

In order to evaluate the complete hand-body association
framework, three different crowded scenarios, were recorded.
Each scenario takes place in a different location with dif-
ferent lighting conditions. As can be seen from the images
shown in Figure 7, these scenarios represent a challenging,
real-world environment for HRI. Each scenario is over a
minute long, and consists of various people within the
crowd gesturing towards the robot. People and gestures were
manually annotated to facilitate automatic results generation.
The datasets have been made publicly available'. Figure 7
shows hand-body association results from each of the three
scenes. Tracked bodies are displayed in red, tracked hands
are displayed in blue, and associations are denoted with a
white line.

Hand-body association accuracy for the scenarios is shown
in Table III. These results were obtained by backprojecting
the estimated 3D hand and body positions, and comparing
them with ground truth, image-space, annotations made on a
640 by 480 pixel image. Ignoring a detection’s z-component,
a hand is considered correctly detected if it lies within
0.1 m of the ground truth, whilst a body is considered
correctly detected if it is within 0.3 m. Using the well-known
tri-phase gesture model, only the stroke phase [20] (the
unique component) of a gesture was analyzed during results
generation. The association accuracy of the shape context
was generated using the presented hand-body association
algorithm, with hands detected using the shape context rather
than the proposed hand detector. To minimize the effect of
crowded background noise on the shape context, only edge
points within 0.3 m of a keypoint were analyzed.

With a minimum association accuracy of 74.9% in such a
challenging environment, these results validate the success
of the proposed algorithm. This is further reinforced by

Ihttp://www.imperial.ac.uk/hamlyn/eo/
gesturedataset



Fig. 7. Example results showing the accuracy of the proposed hand-body association method in three different crowded scenes. Each scene has different
lighting conditions, and a range of gesturing people from various backgrounds. Tracked bodies are displayed in red. Tracked hands are displayed in blue.

Associations are shown with a connected white line.

TABLE III
TABLE SHOWING HAND-BODY ASSOCIATION RESULTS FOR THE THREE
SCENARIOS EVALUATED.

1 2 3
Av. Gesture Length (s) 2.3 2.0 2.1
Body Detection Accuracy (%) 884 86.8 925

PROPOSED DESCRIPTOR
Hand Detection Accuracy (%) 784 764 83.0
Association Accuracy (%) 864 749 909
False Positive Associations per Frame 0.11 0.13  0.05

SHAPE CONTEXT
Hand Detection Accuracy (%) 39.7 40.0 35.7
Association Accuracy (%) 762 46.8 56.3
False Positive Associations Per Frame 0.42 0.32 0.23

the 90.9% association accuracy in the third scenario. Hand
detection performance using the shape context is notably
worse. This can be explained due to the varied gestures used
in the crowded test environments that were not present during
classifier training. The shape context does not generalize well
to samples that it has not been trained on. However, the
use of geodesic distances in the proposed descriptor allows
it to perform well outside the noiseless environments that
it was trained on, and generalize to new hand postures.
Additionally, the number of false positives produced by the
proposed descriptor is almost four times less on average than
the shape context.

Association accuracy for the shape context is much higher
than its hand detection accuracy. This can be explained as a
result of the subtleties of the gestures. If a Kalman filter is
instantiated at the start of a subtle gesture, it can lie within
0.1 m of the ground truth for much of its duration, even
without further detections to update its position. Although

decreasing the ground truth threshold below 0.1 m can alle-
viate this effect, this results in incorrectly reduced detection
accuracy.

Despite these results, a source of inaccuracy in the pro-
posed method can be identified, being that the hand detector
is susceptible to self-occlusions. When a foreshortened hand
is presented that the detector was not trained on, detection
frequently fails. Shorter gestures are usually less pronounced,
and thus exhibit this behavior more often. Decreasing max
can alleviate this problem, at the expense of increased false
positives.

V. CONCLUSIONS

In this paper, we have introduced a framework for hand
and body association in crowded environments, for human-
robot interaction. Three main novelties were presented. A
hand detector, optimized for crowded environments, was de-
scribed. Detailed results were presented and its performance
was validated against the shape context descriptor. A method
of body detection was presented, along with a probabilistic
algorithm for associating the results with detected hands.
Quantitative analysis of the framework was performed in
a number of crowded environments, where the robustness
and generality of the method was again validated against the
shape context. Additionally, the datasets for this work have
been made publicly available.

The most obvious application of this work is to form part
of a gesture recognition system. Gesture recognition is a
vital component of HRI and as such requires a robust un-
derlying hand-body association framework. Human attention
detection is another natural application of this work. Without
such a system, a robot that detects and associates gestures
simultaneously from multiple people will have no way of
prioritizing detected commands.
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