Performance Comparison of Two Step Segmentation Algorithms using Different Step Activities

Heike Leutheuser, Sina Doelfel, Dominik Schuldhaus, Samuel Reinfelder, Bjoern M. Eskofier
Digital Sports Group, Pattern Recognition Lab, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany

Introduction

Motivation
Insufficient physical activity = 4th leading risk factor for mortality

Field of Application
Activity recognition in the field
Classification of movement disorders (e.g. Parkinson’s disease)
Robust step segmentation in daily life

Hardware & Preprocessing
2 SHIMMER sensor nodes (204.8 Hz)
- 3-D accelerometer
- 3-D gyroscope
Butterworth filter
- Order: 2
- Type: low-pass
- Cutoff frequency: 17 Hz

Methods

Study Design
15 healthy subjects (8 female, 7 male):
Exercises:
- Walking (twice)
- Jogging (twice)
- Ascending stairs
- Descending stairs
Basic Step Activity (BaSA) dataset
BaSA dataset download: http://www.activitynet.org

Evaluation
Leave-one-subject-out cross-validation
Performance measure:
Error rate = \(|\text{# reference steps} - \text{# calculated steps}| / \text{# reference steps} \times 100\%

Statistics:
- Multivariate Analysis of Variance (ANOVA)
- ANOVA with repeated measures
- Post-hoc t-tests with Bonferroni correction

Peak Detection Algorithm
Detection of steps:
- Threshold-based maxima determination
- Minimum time (iteratively adapted)
- \(v_i(t) > 100°/s \) & \(v_{i+1}(t) < 0°/s \)
- \(v_i(t) < 0°/s \)

Subseq. Dynamic Time Warping

One Step
Several steps

Results

Error Rates

Lowest error rates for walking: peak detection algorithm and sDTW (Template Walking)
- Most steps in walking activities
- Template Walking has lowest SD around mean performed similarly

Discussion

Highest error rates with Mixed Template:
- Jogging and walking temporal phases differ considerably
- No representation of normal step or a jogging step

Comparison of calculated steps with total number of steps

Summary & Outlook

BaSA dataset with realistic and natural movements
Peak detection and sDTW algorithm with equal performance
- Comparison of calculated steps with identical steps
- Investigate performance in transitions (e.g. walking \(\rightarrow \) jogging)
- Adaptive approach according to activity

References

Acknowledgments

The authors thank all subjects for participation in the study. We thank the addax AG for financial and technical support of the study. This work was funded by the Bavarian Ministry for Economic Affairs, Infrastructure, Transport, and Technology and the European Fund for Regional Development.

 ủyلأا ينارئجلا نم تاباختان لاثولرت دنع لوصحلا ينیللا تاباختانلا نم